
September 2003 www.stsc.hill.af.mil 21

There are a number of methodologies
and approaches to agile development.

For the sake of this article, the discussion
will center on how we at AgileTek handle
defect management within the context of
a software project that uses our Agile+
methodology1. There is sufficient overlap
between the various agile methodologies
that this discussion should have ample
application to any of them

Software defects only exist if, at the
end of the day, someone says, “This soft-
ware is not accomplishing the purpose for
which it was written with the accuracy, effi-
ciency, and ease of use that was intended.”

This article discusses defect manage-
ment in two broad categories: require-
ments defects and implementation defects.
The term requirements is used in a broad
definition to include all types of require-
ments, functional specifications, and other
means to define what the software is sup-
posed to do and, from a functional per-
spective, how it is supposed to do it.
Implementation defects refer to defects in
architecture, design, coding, installation, or
any other aspect of the technical imple-
mentation of a software development
project.

Let me begin with a case in point. More
than a decade ago, I and the other future
AgileTek co-founders received a function-
al specification from a large ($13 billion
today) consumer products company. It was
not an overly complex system, but the
functional specification ran to more than
400 pages. The painstaking detail of the
document was impressive; every detail of
the user interface, validation rules, and
exactly how everything was to work was all
spelled out. We got the job.

While the software was intended for
use by the field sales force, our customer
was the information technology (IT)
organization. We suggested that perhaps it
would be wise for our development team
to sit down with some of the intended
users and review the specifications. We
were told that the IT folks had already
done that and, moreover, the effort had
taken up more of the users’ time than they

wanted to give; there was no need for any
further review. All we needed to do was to
build and test the software to spec – what
we call spec conversion in our business.

What seemed like a straightforward
task of turning the specifications into bits
and bytes got complicated when we dis-
covered that what it said on page 83 con-
tradicted what it said on page 183 and so
forth. Could we have possibly analyzed,
absorbed, and understood those 400 pages

well enough to catch such problems before
we began? Of course not. More impor-
tantly, do you think that anyone in the sales
force really analyzed, absorbed, and under-
stood those 400 pages even though they
approved the specification? Most assured-
ly not! Their eyes probably glazed over
around page 20, and they had no choice
but to approve a specification they neither
had the time nor skill to understand.

Eventually the questions were all
answered (by the IT folks, not the users),
the system was installed in a test environ-
ment, and a group of users came to town
for user acceptance testing. At the end of
the first day of explaining how the system
worked with the users and letting them get
some hands-on experience, my architect
asked the user-group’s supervisor what
she thought of the software. “This isn’t
the software we need!” was her disheart-
ening reply.

I relate this story to underline the
importance of building the right software.

Requirements defects of any nature are
the most disastrous and costly. How are
requirements and requirements defects
managed in Agile+, a software develop-
ment methodology1? Several of the com-
ponents of this methodology speak direct-
ly to this issue.

Customer at the Center of
the Project
One of the problems in the anecdote
above was the fact that the people who
really needed the system to do their work
were isolated from the people who were
building the system. Some development
organizations try to keep the customer at
arm’s length. By building a lot of customer
involvement into our projects, we ensure
that we are getting adequate and frequent
feedback to keep the project on target.

In Agile+, the customer is treated as a
full-fledged member of the development
team with access to all the information to
which the rest of team is privy (e.g., defect
logs, issue lists, etc.). Once on the team,
constant effort is made to ensure that the
customer is an integral part of that team.
An Agile+ project is steered by a dedicat-
ed individual (customer or customer
proxy) who is empowered to determine
requirements, set priorities, and answer
programmers’ questions as they arise.

This is one of the most critical issues
in managing requirements defects. There is
no substitute for adequate client involvement.
Clients must invest the right amount of
time from the right people if they are
going to get an effective result.

Flexibility to Meet Client’s
Special Needs
If there is any conflict between the prod-
ucts produced by our methodology and
the customer’s needs, the methodology is
adapted to serve the customer. For exam-
ple, Agile+ takes a minimal approach to
documentation – only enough to ensure
proper execution and maintenance.

Defect Management in an
Agile Development Environment

Don Opperthauser
AgileTek

Agile development practices are sometimes thought of as an undisciplined approach to software development, lacking such
things as effective defect management. However, agile development does not hinder the use of formal defect management process-
es in any way. On the contrary, agile development does much to reduce the incidence of defects in the first place. This article
will paint the picture of defect prevention and management within an agile development environment.

“There is no substitute
for adequate client

involvement. Clients must
invest the right amount
of time from the right

people if they are going
to get an effective

result.”

Defect Management

22 CROSSTALK The Journal of Defense Software Engineering September 2003

However, in regulated environments such
as pharmaceutical research, painstakingly
detailed documentation is almost always a
required byproduct of any related software
development. In such a case, normal doc-
umentation procedures are modified to
meet project requirements.

Business Process Analysis
A thorough understanding of the business
objectives that the software must achieve is
crucial to reaching desired results. Too
often the development team does not get
involved early enough in the process to
define the software to be built. The discus-
sions that take place during iteration plan-
ning sometimes are not enough to ensure
an understanding of the underlying busi-
ness process to be supported. By the way,
I am using the term business process in the
broadest sense, to include manufacturing
processes, military processes, or any
process that needs to be carried out to
accomplish the goals of an organization.

A formal, facilitated business process
analysis (BPA), with the entire development team
present, should begin any development
effort. It is usually not enough for some
BPA professionals to work for days and
weeks to produce a BPA document, hand
it to the development team, and say, “Read
this.” The discussions and nuances that
occur during the BPA sessions cannot all
be put into words, and certainly the devel-
opment team cannot gain the depth of
understanding needed to design and build
the right application without personal par-
ticipation in the BPA.

There is a very important point behind
all of this. Despite all of our processes and
technologies, software development is a
rather new industry compared to some-
thing like building houses, which we have
been doing for thousands of years. There
are too many variables in building soft-
ware, too many nuances, and too many
possible user actions and paths through
the system. Time to gain a personal under-
standing is needed, and the BPA is the per-
fect vehicle.

User Stories and Story Actors
Expressing requirements in terms that
everyone can understand goes a long way
to ensure you are building the right soft-
ware. Many approaches to requirements
definition produce results that are all but
incomprehensible to the customers who
really understand what the software needs
to be.

In Agile+ and many other approaches
to agile development, requirements for the
system are gathered through user stories
(sometimes referred to as use cases) that

are developed through customer interac-
tion. A user story does not fully define a
requirement; rather, it defines an underly-
ing business need from which the require-
ments can be determined. Later during
architecture development, these stories
inform the scenarios that are used to help
validate the architecture.

We have added to the concept of stories
the concept of story actors. Actors are per-
sonifications of the various categories of
users that the system will encounter.
Thinking of the requirements in terms of
actors brings the requirements to life, and
unmasks nuances that would otherwise
remain invisible to both the developers
and the customer. It enables the require-
ments to be written in terms of how the
system will be used versus desired func-

tions. Finally, by associating who is doing
what, it helps conceptualize and compart-
mentalize the functions.

This approach allows high-level
requirements to be expressed in terms
understandable to users who really know
what the system needs to do and to execu-
tives who must approve them.

Iterative Development
Short iterations allow the customer to see
completed functionality very early on so
that feedback is not only meaningful, but
also received in time to keep the project on
track with respect to the final project goals.

The key tenet in all agile software
development methods is iterative develop-
ment and the unforgiving honesty of
working code. The concept of iterative
development has been around for a long
time and is perhaps best known through
the application of spiral development.

Our iterations are kept short, generally
no more than three to five weeks.
Iterations begin with an iteration planning
session during which the customer and
project team select the user stories to be
implemented during the iteration. Once
the user stories are selected, the iteration
planning continues with consideration of

such elements as screen designs, user
workflow, data input/output, etc. This is
then input to a period of design (days of
design) wherein business analysts and devel-
opers work together to develop specifica-
tions and produce component designs.
Tests for these designs are developed prior
to writing the code; the code is then exer-
cised using these tests.

At the end of each iteration, we deliv-
er working code for the stories implement-
ed and review it with the customer. This
enables our customer and us to evolve our
understanding, challenge assumptions, and
make informed choices and decisions.
Using the information gained during the
iteration review, we are in a much better
position to plan the next iteration.

A software development effort meet-
ing its requirements is analogous to a pro-
jectile hitting its target. In effect, each iter-
ation is an opportunity to provide the
development project mid-course guidance.
By keeping the time period between itera-
tions to no more than five weeks, the feed-
back loops are kept short, thus providing
frequent guidance and ensuring the project
never gets far off-track. Iterative development
is perhaps the single most important vehicle for
managing requirements defects.

In addition to building the right soft-
ware, i.e. effectively managing require-
ments and requirements defects, the more
traditional concept of defect management,
building the software right, must also be
addressed. Implementation defects are a
major source of project trouble in tradi-
tional methodologies where late-stage inte-
gration brings system modules together
near the end of the project. This usually
results in an unbelievable number of
defects. The development team goes into
near paralysis while they try to get their
newly integrated, defect-ridden system
repaired to the point where meaningful
system testing can even begin.

One of my colleagues for many years
liked to refer to “Larry’s two-phase soft-
ware development methodology – defect
creation and defect removal!” Agile+ takes
a two-pronged approach to implementa-
tion defects. Some of the practices help
prevent defects from ever getting into the
software, and others facilitate early detec-
tion and repair.

Let us examine the practices of Agile+
that impact implementation defects.

Identifying System
Components and Interfaces
Clearly defined components and interfaces
are key to quality code. Especially for com-
plex systems, it is important to assure con-
ceptual integrity in the final product. Also,

“The key tenet in all
agile software

development methods is
iterative development and
the unforgiving honesty

of working code.”

Defect Management in an Agile Development Environment

September 2003 www.stsc.hill.af.mil 23

because complex systems can be large, it is
important to enable the system to be
developed in an environment of distrib-
uted ownership.

Architecting a system simply means
identifying the constituent components of
the system and defining the interrelation-
ship(s) between them. The best architec-
tures are isomorphic (one-to-one) map-
pings between problem and program
space. This ensures that a system’s under-
lying structure and components mirror
the problem being solved. This means that
for the program to change requires that
the problem changes, and as a result, you
are change-proofing your program. While
there may be more efficient ways to solve
a problem (e.g., creating one module to
perform similar functions by invoking it in
a context sensitive way), this efficiency will
almost always come at the expense of
time spent debugging and later modifying
the program if one or more of the func-
tions change.

However, it also means something
more. By defining the relationships
between the various components, you have
gone most of the way toward establishing
agreements for the interfaces. The power
of interface agreements is that they serve
as restrictive liberators. In other words, the
individuals working on various system
components are free to design the inter-
nals of those components without regard
for potential untoward effects on the rest
of the system – so long as the interface
agreements are honored.

As you can see from this discussion, a
rigorous approach to identifying compo-
nents and adherence to well-defined inter-
faces severely limits the effect that defects
can have, thus making it easier to localize
and repair defects when they do occur.

Collective Ownership
The team approach leverages the entire
team’s thinking on critical problems and
ensures that no one is working in a vacu-
um, possibly going off in the wrong direc-
tion. The pride of ownership diffuses
through the entire team, creating a high
degree of motivation to write good,
defect-free code. Peer pressure is very
effective if there is someone on the team
who is creating more than his or her share
of defects, thus creating problems for
everybody.

Continuous Integration
Software development history is strewn
with projects that failed at the critical junc-
ture of integration – bringing all of the
components together near the end of the
project. Continuous integration uncovers

integration issues early. In this manner,
integration defects, if any, are introduced
one at a time as small pieces are integrated
into the system and therefore are resolved
more easily.

Relentless Testing/Automated
Contract and Regression Testing
Requiring developers to submit virtually
defect-free code to start with ensures not
only a high quality product, but also con-
sistent quality throughout the project.
Agile+ requires that software contracts be
written and automated tests designed
before coding begins2. Contracts define
the pre-conditions, post-conditions, and
class invariants for any function to be
written, and the automated tests check for
these.

Before a developer can check code
into the configuration management sys-
tem, he or she must have a build of the
entire system, including new code on
either his or her development computer or
on a test system designated for that pur-
pose. The developer must then run not
only his or her newly written automated
test for the new code, but also all auto-
mated tests that exist for the entire system.
Only when all tests return defect-free
results may the developer add his or her
new code to the project. In this way, very
few defects are introduced into a project
build and the system under development
is maintained in a relatively defect-free
state at any given time.

Refactoring3

Designs and architectures are boldly
changed when needed to maintain the
correct architecture throughout the proj-
ect. Development that proceeds without
fully automated tests on the entire system
as described above soon reaches the
point where major changes in architec-
ture become too risky. Developers then
will use workarounds, kludges, and other

poor programming practices to avoid
doing what they should do – make the
major changes necessary to make the sys-
tem work the way it really should.
Refactoring is what enables this architec-
tural and design rework. It keeps the sys-
tem clean and contributes greatly to min-
imizing defects and making it easier to
identify and repair defects that do occur.

Pair Programming
“Two heads are better than one” (and
sometimes cheaper, too). Putting two
developers on very complex or high-risk
tasks decreases the risk of poor results.

Coding Standards
The maintainability of code is directly
affected by having good coding stan-
dards, not the least of which is guidelines
for properly commenting code.

In addition to these best practices
designed to prevent defects, you will of
course need some system for tracking
defects, defect repairs, certification of
repair after retesting, documentation of
items found in system testing that are not
really defects but future enhancements,
etc. These tracking systems may be more
or less sophisticated depending on proj-
ect complexity and client requirements.

In some regulated environments, such
as pharmaceutical or Department of
Defense environments, it may be neces-
sary to track defects and repairs back to
the original affected requirements. The
goal of defect tracking in Agile+ is to
have no more tracking than necessary to
achieve project goals, legal or client
requirements, and metrics desired to ana-
lyze effectiveness of the software devel-
opment effort.

Defect management systems should
track a number of basic things, including
the following:
• An accurate description of the defect,

including detailed steps for reproduc-
ing the defect and as much informa-
tion as possible about the application
environment at the time the defect
was discovered.

• History of the defect, including who
discovered it, who is assigned to
repair it, when it was fixed, who is
assigned to verify and certify the
repair.

• Where the defect originated. In other
words, why is this defect here? Is it a
mistake in requirements, architecture,
design, coding, or perhaps faulty tools
such as a compiler defect, etc?
Too often defect management is so

focused on defect repair and getting the
software out the door that we fail to learn

“Too often defect
management is so

focused on defect repair
and getting the software
out the door that we fail

to learn from what is
happening.”

Defect Management

24 CROSSTALK The Journal of Defense Software Engineering September 2003

from what is happening. Analysis should
take place to determine why the defect
occurred, not just where. Was it bad
information, inadequate skills to do the
job right, careless execution, or some
other cause? Knowing why the defect
occurred will help us continuously
improve our processes and performance.

In conclusion, Agile+ provides a set
of practices that focus on prevention of
both requirements and implementation
defects while facilitating the effective and
efficient identification and repair of
defects that do get into the project.◆

Notes
1. Agile+ is a further refinement of Code

Science, which is described in
“Odyssey and Other Code Science
Success Stories,” CrossTalk Oct.
2002: 19-21.

2. Bertrand Meyer introduced the idea of
Design by Contract. For more on this,
see his book Object-Oriented Software
Construction. 2nd ed. Prentice Hall,
1997.

3. Martin Fowler defines refactoring as
“the process of changing a software
system in such a way that it does not
alter the external behavior of the code
yet improves its internal structure.” For
more on refactoring, see his book

Refactoring: Improving The Design of
Existing Code. 1st ed. Addison-Wesley,
1999.

About the Author
Don Opperthauser’s
software development
career has spanned
responsibilities from
head-down program-
mer to senior executive

responsible for multi-million dollar
projects for Fortune 100 companies.
He successfully managed a multi-mil-
lion dollar software project for the
third largest U.S. corporation. The
project, which was critical to the
client's product development, was
completed in a record five-month peri-
od. Software developed under his lead-
ership was key in providing the
enabling software for the most prof-
itable business unit of another Fortune
100 Company.

Phone: (847) 770-1637
Fax: (847) 813-4903
E-mail:dopperthauser@agiletek.com

Software Certifications
www.softwarecertifications.com
The goal of Software Certifications is to
offer an independent professional certifi-
cation that carries weight in the informa-
tion services marketplace, and is consid-
ered valuable to all of those professionals
who seek and attain one of the certifica-
tions. The Quality Assurance Institute
Professional Certification division spon-
sors and administers the software certifica-
tion programs. Available certifications
include the Certified Software Quality
Analyst and a newly added Certified
Software Project Manager.

Institute of Configuration
Management
www.icmhq.com
The Institute of Configuration Manage-
ment is known for its CMII process,
which is an advanced version of configu-
ration management (CM). CM is the
process of managing products, facilities,
and processes by managing their require-
ments, including changes, and assuring
conformance in each case. CMII is CM
plus continuous improvement in these

five areas: (1) accommodate change, (2)
accommodate the reuse of proven stan-
dards and best practices, (3) assure that all
requirements remain clear, concise and
valid, (4) communicate (1), (2) and (3)
promptly and precisely, and (5) assure that
the results conform in each case. CMII
expands the scope of CM (beyond design
definition) to include any information
that could impact safety, quality, schedule,
cost, profit, or the environment.

International Society of Six
Sigma Professionals
www.isssp.com
The International Society of Six Sigma
Professionals (ISSSP) exclusively promotes
the interests of Six Sigma professionals. It
is a global community comprised of indi-
viduals seeking to learn how Six Sigma
might be introduced – or integrated – into
their business processes, deployment and
implementation experts, and businesses
that are implementing Six Sigma and
other change management practices.
ISSSP is committed to the advancement of
education, research and implementation
of the Six Sigma methodology.

WEB SITES

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave.

Bldg. 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

MAR2002 " SOFTWARE BY NUMBERS

MAY2002 " FORGING THE FUTURE OF DEF.

AUG2002 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

NOV2002 " PUBLISHER’S CHOICE

DEC2002 " YEAR OF ENG. AND SCI.

JAN2003 " BACK TO BASICS

FEB2003 " PROGRAMMING LANGUAGES

MAR2003 " QUALITY IN SOFTWARE

APR2003 " THE PEOPLE VARIABLE

MAY2003 " STRATEGIES AND TECH.

JUNE2003 " COMM. & MIL. APPS. MEET

JULY2003 " TOP 5 PROJECTS

AUG2003 " NETWORK-CENTRIC ARCHT.

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

